A Semantic Proof that Reducibility Candidates entail Cut Elimination

نویسندگان

  • Denis Cousineau
  • Olivier Hermant
چکیده

Two main lines have been adopted to prove the cut elimination theorem: the syntactic one, that studies the process of reducing cuts, and the semantic one, that consists in interpreting a sequent in some algebra and extracting from this interpretation a cut-free proof of this very sequent. A link between those two methods was exhibited by studying in a semantic way, syntactical tools that allow to prove (strong) normalization of proof-terms, namely reducibility candidates. In the case of deduction modulo, a framework combining deduction and rewriting rules in which theories like Zermelo set theory and higher order logic can be expressed, this is obtained by constructing a reducibility candidates valued model. The existence of such a pre-model for a theory entails strong normalization of its proof-terms and, by the usual syntactic argument, the cut elimination property. In this paper, we strengthen this gate between syntactic and semantic methods, by providing a full semantic proof that the existence of a pre-model entails the cut elimination property for the considered theory in deduction modulo. We first define a new simplified variant of reducibility candidates à laGirard, that is sufficient to prove weak normalization of proof-terms (and therefore the cut elimination property). Then we build, from some model valued on the pre-Heyting algebra of those WN reducibility candidates, a regular model valued on a Heyting algebra on which we apply the usual soundness/strong completeness argument. Finally, we discuss further extensions of this new method towards normalization by evaluation techniques that commonly use Kripke semantics. 1998 ACM Subject Classification F.4.1 Mathematical Logic

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complete reducibility candidates

Deduction modulo is an extension of first-order predicate logic where axioms are replaced by a congruence relation on propositions and where many theories, such as arithmetic, simple type theory and some variants of set theory, can be expressed. An important question in deduction modulo is to find a condition of the theories that have the strong normalization property. Dowek and Werner have giv...

متن کامل

Orthogonality and Boolean Algebras for Deduction Modulo

Originating from automated theorem proving, deduction modulo removes computational arguments from proofs by interleaving rewriting with the deduction process. From a proof-theoretic point of view, deduction modulo defines a generic notion of cut that applies to any first-order theory presented as a rewrite system. In such a setting, one can prove cut-elimination theorems that apply to many theo...

متن کامل

Semantic A-translation and Super-consistency entail Classical Cut Elimination

We show that if a theory R defined by a rewrite system is super-consistent, the classical sequent calculus modulo R enjoys the cut elimination property, which was an open question. For such theories it was already known that proofs strongly normalize in natural deduction modulo R, and that cut elimination holds in the intuitionistic sequent calculus modulo R. We first define a syntactic and a s...

متن کامل

Toward a General Rewriting-Based Framework for Reducibility

Reducibility is a powerful proof method which applies to various properties of typed terms in different type systems. For strong normalization, different variants are known, such as Girard’s reducibility candidates, Tait’s saturated sets and biorthogonals. They differ by the closure conditions imposed to types interpretations, called here reducibility families. This paper is about the computati...

متن کامل

A Simple Proof That Super-Consistency Implies Cut Elimination

We give a simple and direct proof that super-consistency implies cut elimination in deduction modulo. This proof can be seen as a simplification of the proof that super-consistency implies proof normalization. It also takes ideas from the semantic proofs of cut elimination that proceed by proving the completeness of the cut free calculus. In particular, it gives a generalization, to all super-c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012